Kombi Club Australia
Alternator fault Finding - Printable Version

+- Kombi Club Australia (https://kombiclubaustralia.com)
+-- Forum: Help & Assistance (https://kombiclubaustralia.com/forumdisplay.php?fid=27)
+--- Forum: Bay Tech Clinic (https://kombiclubaustralia.com/forumdisplay.php?fid=8)
+---- Forum: Fuel System & Electrics (https://kombiclubaustralia.com/forumdisplay.php?fid=43)
+---- Thread: Alternator fault Finding (/showthread.php?tid=22)



Alternator fault Finding - Oldman - 01-07-2022

Alternator faultfinding info Bosch
Quote:Below is a post from a BMW forum with information I have not found elsewhere which has helped me find a fault in the voltage control circuit. I have reproduced the post in full with credit to the original poster. There is a lot more info than anywhere I have managed to find and possibly some may not be relevant to our application, but I feel it should not be edited out of respect for the original poster.

I have found that when I started the engine without revving the alt light would stay on, and then with a few revs on charging normally at 14v but alt light still glowing. Checking the blue cable (connects to D+) from the regulator I found it only getting up to 10v, with the battery voltage 12.8 and increasing. Different regulators and same result. From the info below it appears that the D+ should be the same voltage as B+ but they have their own sets of diodes, the D+ ones much smaller current rated. I am expecting the loss of one of these will reduce the voltage at the D+ and may show a component of AC voltage. Anything more than .5 of a volt AC indicates that a diode has failed. This arrangement may not be the same for other makes of alternator but might help with at least our Type IV ones.

EDIT: Just gone down this morning to change out the alternator and did one final check and the problem has disappeared! At least I have a better understanding of the circuitry now. Grumble Grumble.....

edit edit: it happened again so did an alternator swap(in 55mins, pretty impressed) and new alternator working beautifully. 

Adrian

Subject: alternator system troubleshooting
Author: shogun (moderator)[Image: bmw_reallytiny_roundel.jpg] : member since March, 2004 : 19372 postsPosted on: 2011-01-23 02:16:57  [Image: lg-share-en.gif]
There are four connections to the alternator itself. D+, DF,D-, and B+. If you look at the Haynes book, what is not readily apparent, but is true nevertheless, is that the set of diodes that connect to the D+ terminal are a duplicate set (except for lower current rating) to the ones for the B+ terminal, which is the actual high current output of the alternator. The D+ terminal is therefore a duplicate output terminal of the alternator, with less current capability. The lower set of diodes on current track 80 is common to both the D+ and B+ functions, and forms the ground return for both the B+ and D+ outputs. The DF or "Dynamo Field" terminal connects to the ungrounded end of the alternator field winding, and is an input to the alternator. The current supplied to the DF terminal determines the strength of the magnetic field that penetrates the output windings, and thus controls the alternator's output. The D- terminal is connected to the alternator frame, and is the ground return for the voltage regulator. The other end of the field winding is also connected to ground at this point.

The Bosch alternator is incapable of self-excitation, or "boot-strapping" itself to an operating condition. Older DC generators and some U.S. alternators have residual magnetism retained in the core, or some other scheme to get enough field current to get themselves up and running. The Bosch alternator uses a different scheme. The charge warning lamp is connected between the ignition switch and the D+ terminal. When the car is first started, there is no output from the alternator at either the B+ or D+ terminals. The voltage regulator, sensing no output, is attempting to command maximum field current... it effectively shorts the D+ and DF terminals together. This places the D+ terminal close to ground potential, because the resistance of the field winding is not large. This means that there is +12 volts on one side of the charge warning lamp, and the other side of the lamp is grounded through the alternator field winding. Current thus flows through the lamp, lighting it. This same current, however, also flows through the alternator field winding, producing a magnetic field. This magnetic field is what the alternator needs to start up, and if everything is working correctly, that's exactly what happens. The alternator now begins to develop identical voltages at the D+ and B+ terminals. The D+ terminal is connected to one end of the charge warning lamp, while the other end of the lamp is connected to the battery via the ignition switch. Since the B+ terminal is hard-wired to the battery, and since both the D+ and B+ diodes are fed from the same set of windings in the alternator, no voltage difference can exist between these two points. The warning lamp goes out.

The voltage regulator "watches" the voltage at the D+ point, which should be the same as that applied to the battery. It now changes the short between the D+ and DF terminals into a variable resistance. This effectively controls the field current (whose source is now the output from the D+ terminal, and not the charge warning lamp) and thus regulates the output voltage of the alternator.

Fault conditions: When something happens to the charging system that causes it's output to be insufficient, the result is almost always a net voltage difference across the charge warning lamp, causing it to light. For example: Suppose an output (B+) diode opens. The efficiency of the main output is now considerably reduced. The voltage regulator does not know this, however, because it is looking at the D+ point. So, the B+ output is now lower than the D+ point and the warning lamp lights. Let's say that one of the D+ diodes failed: The D+ output is now reduced considerably. This means that the voltage regulator will have difficulty in maintaining sufficient field current for normal output. The field regulating resistance is low or short (between D+ and DF terminals) and the resulting load on the crippled D+ system drops it's voltage well below the battery voltage. Therefore, there is a net voltage difference across the charge warning lamp and it lights.

The bottom line is that in order for your light to light, you must have a net imbalance in the outputs of the D+ and B+ sections of the alternator (or between the D+ output and the battery voltage, which amounts to the same thing).

To trouble-shoot the problem, you need to check the various sections independently. Thus the first check: Connect +12 volts from the battery to the DF terminal on the relay board. This is the maximum field current situation, and should result in maximum output of the alternator. Note that this checks the B+ diodes, the alternator windings, and the common diodes. It does NOT check the D+ diodes.

To check the D+ portion of the system, it is necessary to find out if the D+ output can produce enough current to drive the alternator to full output. To do this, short the D+ and DF terminals on the relay board. This will provide the maximum field current to the alternator that the alternator ITSELF can supply (not the battery, as in the earlier check) and so checks the remainder of the circuitry. If this test puts the light out, then the alternator is good, and the trouble is elsewhere. If it doesn't, then the alternator is almost certainly bad, with one other possibility:

In the Bosch system, the size of the charge warning lamp bulb is critical. Too low a wattage bulb will not supply enough field current for "bootstrap" operation to be reliable. The Bosch book that I have states that the lamps must be at least 2 watts for 12 volt systems. If you have replaced your charge warning lamp recently, then too small a lamp may be your culprit.

written by Jim T.



RE: Alternator fault Finding - Mordred - 23-10-2023

Another charging problem presented on our recent trip to the mainland. 

Cruising along and noticed the recently installed digital Voltmeter (always a warning with new parts, and part of a dual USB outlet and so made the analogue VDO one I had redundant) had showed the voltage dropped from 13.9V to 12.5v and slowly reducing. No Alt light on the dash illuminated (or even glowing faintly). A few mins later back to 13.9V.  This happened intermittently over a number of days, sometimes turning off the ignition corrected it, other times turning the headlights on and off (sometimes neither had an effect) and other times just by itself.

I checked the voltages at the voltmeter with a multimeter in both normal and non charging states and the readings aligned, so not a dodgy meter. I also checked to see if there was an AC voltage indicating a faulty or failing diode, but this showed zero. The Regulator was the easiest component to replace and I had one with me. The existing Voltage Regulator was a Transpo IB301A and had been in service for many years. (I might add the regulator when removed wasn't hot or even warm) The replacement was a Bosch RE57.  Same pinout so a 5 min swap.  Both these are solid state versions of the mechanical voltage regulators originally supplied and have a D- pin rather than the D- being connected internally to the VR case (like the Bosch RE55).

I then drove for over an hour without any change to the 13.9v showing on the voltmeter so it looks like I may have found the source of the issue.

I will have to do some testing on the Transpo regulator when I have some time as the testing procedure (using a 5W globe as the field winding and a variable voltage source for the D+ and ground which should be sufficient to load the field connections) shown on a post on the Samba didn't work for the Transpo or any other solid state regulators and only marginally successfully on 2 mechanical ones I had tested by an auto electrician a few years back.

Adrian